Extreme Rainfall over Complex Terrain: An Application of the Linear Model of Orographic Precipitation to a Case Study in the Italian Pre-Alps

Author:

Abbate AndreaORCID,Papini Monica,Longoni LauraORCID

Abstract

Intense meteorological events are the primary cause of geohazard phenomena in mountain areas. In this paper, we present a study of the intense rainfall event that occurred in the provinces of Lecco and Sondrio from 11 to 12 June 2019. The aim of our work is to understand the effect of local topography on the spatial distribution of rainfall and to attempt the reconstruction of a realistic rainfall field relative to that extreme event. This task represents a challenge in the context of complex orography. Classical rain-gauge interpolation techniques, such as Kriging, may be too approximate, while meteorological models can be complex and often unable to accurately predict rainfall extremes. For these reasons, we tested the linear upslope model (LUM) designed for estimating rainfall records in orographic precipitation. This model explicitly addresses the dependence of rainfall intensification caused by the terrain elevation. In our case study, the available radio sounding data identified the convective nature of the event with a sustained and moist southern flow directed northward across the Pre-Alps, resulting in an orographic uplift. The simulation was conducted along a smoothed elevation profile of the local orography. The result was a reliable reconstruction of the rainfall field, validated with the ground-based rain gauge data. The error analysis revealed a good performance of the LUM with a realistic description of the interaction between the airflow and local orography. The areas subjected to rainfall extremes were correctly identified, confirming the determinant role of complex terrain in precipitation intensification.

Funder

Fondazione Cariplo

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3