Long-Term Variability of the Hydrological Regime and Its Response to Climate Warming in the Zhizdra River Basin of the Eastern European Plain

Author:

Bai Bing12,Huang Qiwei12,Wang Ping12ORCID,Liu Shiqi1,Zhang Yichi1ORCID,Wang Tianye3ORCID,Pozdniakov Sergey P.4ORCID,Frolova Natalia L.5,Yu Jingjie1

Affiliation:

1. Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

3. School of Water Conservancy Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, China

4. Department of Hydrogeology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119899, Russia

5. Department of Land Hydrology, Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow 119991, Russia

Abstract

Climate warming globally has a profound effect on the hydrological regime, amplifying evapotranspiration and precipitation and accelerating the processes of snow melt and permafrost thaw. However, in the context of small river basins—those encompassing less than 10,000 km2—the response of the hydrological regime to climate change is intricate and has not yet been thoroughly understood. In this study, the Zhizdra River Basin, a typical small river basin in the eastern European plain with a total drainage area of 6940 km2, was selected to investigate the long-term variability of the hydrological regime and its responses to climate warming. Our results show that during the period of 1958–2016, the average runoff in the Zhizdra River Basin was approximately 170 mm, with significant fluctuations but no trend. Sensitivity analysis by the Budyko framework revealed that the runoff was more sensitive to changes in precipitation (P) compared to potential evapotranspiration (E0), implying that the Zhizdra River Basin is limited by water availability and has a slightly dry trend. A comprehensive analysis based on the seasonality of hydrometeorological data revealed that temperature predominantly affects spring runoff, while P mainly controls autumn runoff. Both factors make significant contributions to winter runoff. In response to climate change, the nonuniformity coefficient (Cv) and concentration ratio (Cn) of runoff have noticeably declined, indicating a more stabilized and evenly distributed runoff within the basin. The insights gleaned from this research illuminate the complex hydrological responses of small river basins to climate change, underlining the intricate interrelation among evapotranspiration, precipitation, and runoff. This understanding is pivotal for efficient water resource management and sustainable development in the era of global warming.

Funder

National Natural Science Foundation of China (NSFC)-Russian Science Foundation

Science & Technology Fundamental Resources Investigation Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3