Abstract
In Yangon City, chlorination commenced in January 2020 to supply drinkable water; therefore, there is as yet no information on chlorine decay and DBP formation in the water supply system. This study aimed to find methods to optimize chlorine dosage in Yangon City. Onsite sampling and laboratory analyses of residual chlorine and trihalomethane (THM) formation, as well as water quality simulations, were conducted to find the chlorine decay and THM formation kinetics. Due to a high chlorine dose of 2 mg/L for both pre- and post-chlorination, disinfection was effective despite the low removal efficiency of turbidity. However, THMs were found in high levels in both treated and tap water due to the high THM formation potential of raw water. The re-contamination and/or transformation of dissolved organic matter were found in the distribution network by increases in specific ultraviolet absorption (SUVA) values and excitation-emission matrix (EEM) fluorophores, which brought about variations of THMs in the networks. The EPANET models were run assuming there to be no water leakages; it was found that the chlorine dose could be decreased to 0.8 mg/L to meet the guidelines for THMs and residual chlorine. The methods employed in this study could be also applied in other water supply systems in tropical developing countries with limited water quality monitoring data.
Funder
Japan International Cooperation Agency
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献