Design of a mmWave Antenna Printed on a Thick Vehicle-Glass Substrate Using a Linearly Arrayed Patch Director and a Grid-Slotted Patch Reflector for High-Gain Characteristics

Author:

Im Changhyeon,Lim Tae Heung,Choo HosungORCID

Abstract

This paper proposes a 5G glass antenna that can be printed on the thick window glass of a vehicle. The proposed antenna consists of a coplanar waveguide (CPW), a printed monopole radiator, parasitic elements, a linearly arrayed patch director, and a grid-slotted patch reflector. The linearly arrayed patch director and grid-slotted patch reflector are applied to improve the bore-sight gain of the antenna. To verify the performance improvement and feasibility, the proposed antenna is fabricated, and a reflection coefficient and a radiation pattern are measured and compared with the simulation results. The measured reflection coefficient shows broadband characteristics of less than −10 dB from 24.1 GHz to 31.0 GHz (fractional bandwidth of 24.6%), which agrees well with the simulation results. The reflection coefficients are −33.1 dB by measurement and −25.7 dB by simulation, and the maximum gains are 6.2 dBi and 5.5 dBi at 28 GHz, respectively. These results demonstrate that the proposed antenna has high-gain characteristics being suitable for 5G wireless communications.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3