Machine Learning Techniques to Identify Antimicrobial Resistance in the Intensive Care Unit

Author:

Martínez-Agüero Sergio,Mora-Jiménez InmaculadaORCID,Lérida-García Jon,Álvarez-Rodríguez Joaquín,Soguero-Ruiz CristinaORCID

Abstract

The presence of bacteria with resistance to specific antibiotics is one of the greatest threats to the global health system. According to the World Health Organization, antimicrobial resistance has already reached alarming levels in many parts of the world, involving a social and economic burden for the patient, for the system, and for society in general. Because of the critical health status of patients in the intensive care unit (ICU), time is critical to identify bacteria and their resistance to antibiotics. Since common antibiotics resistance tests require between 24 and 48 h after the culture is collected, we propose to apply machine learning (ML) techniques to determine whether a bacterium will be resistant to different families of antimicrobials. For this purpose, clinical and demographic features from the patient, as well as data from cultures and antibiograms are considered. From a population point of view, we also show graphically the relationship between different bacteria and families of antimicrobials by performing correspondence analysis. Results of the ML techniques evidence non-linear relationships helping to identify antimicrobial resistance at the ICU, with performance dependent on the family of antimicrobials. A change in the trend of antimicrobial resistance is also evidenced.

Funder

Instituto de Salud Carlos III

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3