Abstract
Humans are able to detect an instantaneous change in correlation, demonstrating an ability to temporally process extremely rapid changes in interaural configurations. This temporal dynamic is correlated with human listeners’ ability to store acoustic features in a transient auditory manner. The present study investigated whether the ability of transient auditory storage of acoustic features was affected by the interaural delay, which was assessed by measuring the sensitivity for detecting the instantaneous change in correlation for both wideband and narrowband correlated noise with various interaural delays. Furthermore, whether an instantaneous change in correlation between correlated interaural narrowband or wideband noise was detectable when introducing the longest interaural delay was investigated. Then, an auditory computational description model was applied to explore the relationship between wideband and narrowband simulation noise with various center frequencies in the auditory processes of lower-level transient memory of acoustic features. The computing results indicate that low-frequency information dominated perception and was more distinguishable in length than the high-frequency components, and the longest interaural delay for narrowband noise signals was highly correlated with that for wideband noise signals in the dynamic process of auditory perception.
Funder
Natural Science Foundation of Fujian Province of China
Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献