Energy–Water Management System Based on MPC for a Greenhouse in a Mapuche Indigenous Community

Author:

Endo Alvaro1,Parra Sebastian1,Cartagena Oscar1ORCID,Sáez Doris12ORCID,Muñoz Carlos3ORCID,Huircan Juan Ignacio3

Affiliation:

1. Department of Electrical Engineering, Faculty of Mathematical and Physical Sciences, University of Chile, Santiago 8370451, Chile

2. Instituto Sistemas Complejos de Ingeniería, Santiago 8370398, Chile

3. Department of Electrical Engineering, Universidad de La Frontera, Temuco 4811230, Chile

Abstract

Rural communities usually settle in territories where crop self-consumption is the main source of sustenance. In this context, climate change has made these environments of crop control susceptible to water shortages, impacting crop yields. The implementation of greenhouses has been proposed to address these problems, together with strategies to optimize water and energy consumption. In this study, an energy–water management system based on a model predictive control strategy is proposed. This control strategy consists of a fuzzy optimizer used to determine the optimal consumption from isolated microgrids considering the local resources available. The proposed controller is implemented on two timescales. First, medium-term optimization over one month is used to estimate the necessary water demand required to support crop growth and a high yield. Second, short-term optimization is used to determine the optimal climate conditions inside the greenhouse for managing crop irrigation, refilling the reserve water tank, and providing ventilation. Experiments were conducted to test this approach using a case study of an isolated community. For such a case, energy consumption was reduced, and the irrigation process was optimized. The results indicated that the proposed controller is a viable alternative for implementing intelligent management systems for greenhouses.

Funder

Instituto Sistemas Complejos de Ingeniería

Solar Energy Research Center

Scientific and Technological Center of Excellence, IMPACT

ANID-PFCHA/Doctorado Nacional

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3