Distribution and Prediction of Incremental Cutter Flank Wear in High-Efficiency Milling

Author:

Zhao Peiyi1,Song Yufeng1,Jiang Bin1,Wang Bin1

Affiliation:

1. Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin 150080, China

Abstract

In the milling of titanium alloy workpieces, tool wear seriously affects the surface quality of a workpiece and its tool life. It is of great significance to study the influence of instantaneous contact stiffness on instantaneous friction variables and incremental wear, which is of great significance for the realization of control over the degree of flank wear and improving the service life of cutter teeth. In this paper, an experiment to monitor cutting with a Ti6Al4V workpiece with a high-feed milling cutter was carried out; according to the experimental results, the wear area of the flank face of the cutter tooth was determined. The feature points of the flank were selected, and an instantaneous contact stiffness calculation method for the flank was proposed. The infinitesimal method was used to characterize the distribution of the contact stiffness of the flank, and the evolution characteristics of instantaneous contact stiffness distribution under the influence of vibration were obtained. According to the calculation results, the instantaneous distribution of flank wear depth was calculated. A grey correlation degree was used to reveal the correlation between the instantaneous contact stiffness of the flank face and wear depth, and a positionable wear-prediction model based on the instantaneous contact stiffness of the flank was proposed. Based on a BPNN (back propagation neural network), a prediction model for flank wear was established. The results showed that the above model and method could accurately predict the instantaneous wear of the tool flank.

Funder

Natural Science Foundation of China

Nature Science Foundation of Heilongjiang Province of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3