Tree Species Classification in Subtropical Natural Forests Using High-Resolution UAV RGB and SuperView-1 Multispectral Imageries Based on Deep Learning Network Approaches: A Case Study within the Baima Snow Mountain National Nature Reserve, China

Author:

Chen Xianggang1,Shen Xin1,Cao Lin1ORCID

Affiliation:

1. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

Abstract

Accurate information on dominant tree species and their spatial distribution in subtropical natural forests are key ecological monitoring factors for accurately characterizing forest biodiversity, depicting the tree competition mechanism and quantitatively evaluating forest ecosystem stability. In this study, the subtropical natural forest in northwest Yunnan province of China was selected as the study area. Firstly, an object-oriented multi-resolution segmentation (MRS) algorithm was used to segment individual tree crowns from the UAV RGB imagery and satellite multispectral imagery in the forests with different densities (low (547 n/ha), middle (753 n/ha) and high (1040 n/ha)), and parameters of the MRS algorithm were tested and optimized for accurately extracting the tree crown and position information of the individual tree. Secondly, the texture metrics of the UAV RGB imagery and the spectral metrics of the satellite multispectral imagery within the individual tree crown were extracted, and the random forest algorithm and three deep learning networks constructed in this study were utilized to classify the five dominant tree species. Finally, we compared and evaluated the performance of the random forest algorithm and three deep learning networks for dominant tree species classification using the field measurement data, and the influence of the number of training samples on the accuracy of dominant tree species classification using deep learning networks was investigated. The results showed that: (1) Stand density had little influence on individual tree segmentation using the object-oriented MRS algorithm. In the forests with different stand densities, the F1 score of individual tree segmentation based on satellite multispectral imagery was 71.3–74.7%, and that based on UAV high-resolution RGB imagery was 75.4–79.2%. (2) The overall accuracy of dominant tree species classification using the light-weight network MobileNetV2 (OA = 71.11–82.22%), residual network ResNet34 (OA = 78.89–91.11%) and dense network DenseNet121 (OA = 81.11–94.44%) was higher than that of the random forest algorithm (OA = 60.00–64.44%), among which DenseNet121 had the highest overall accuracy. Texture metrics improved the overall accuracy of dominant tree species classification. (3) For the three deep learning networks, the changes in overall accuracy of dominant tree species classification influenced by the number of training samples were 2.69–4.28%.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3