Three-Dimensional Deformation of the 2023 Turkey Mw 7.8 and Mw 7.7 Earthquake Sequence Obtained by Fusing Optical and SAR Images

Author:

An Qi1,Feng Guangcai1,He Lijia1,Xiong Zhiqiang1,Lu Hao1ORCID,Wang Xiuhua1,Wei Jianchao2

Affiliation:

1. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

2. School of Earth Sciences and Spatial Information Engineering, Hunan University of Science and Technology, Xiangtan 411199, China

Abstract

In February 2023, Mw 7.8 and Mw 7.7 earthquakes struck southeastern Turkey. Generating a coseismic 3D deformation field that can directly reflect the characteristics of surface deformation is important for revealing the movement mode of a seismogenic fault and analyzing the focal mechanism. Optical image sub-pixel correlation (SPC) only captures deformation in the horizontal direction, and SAR image pixel offset tracking (POT) obtains range deformation that is not sensitive to north–south deformation signals. Thus, neither of them can capture the complete 3D deformation alone. Combining them may be able to allow the monitoring of 3D deformation. In this study, we used Sentinel-2 optical images to obtain the horizontal deformation (east–west and north–south) and Sentinel-1 and ALOS-2 data to extract the range and azimuth offsets. The least-squares method was used to fuse the optical and SAR offsets to obtain the 3D deformation field of the 2023 Turkey earthquake sequence, which indicates that the two events were both left-lateral strike-slip earthquakes. The surface deformation caused by the two large earthquakes is mainly in the east–west direction. In the vertical direction, the two earthquakes caused a small-magnitude uplift and subsidence. The findings in this paper can be used as a reference for the study of coseismic 3D deformation.

Funder

Natural Science Foundation of Hunan Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3