General Solutions for MHD Motions of Ordinary and Fractional Maxwell Fluids through Porous Medium When Differential Expressions of Shear Stress Are Prescribed on Boundary

Author:

Vieru Dumitru1ORCID,Fetecau Constantin2ORCID

Affiliation:

1. Department of Theoretical Mechanics, Technical University of Iasi, 700050 Iasi, Romania

2. Section of Mathematics, Academy of Romanian Scientists, 050094 Bucharest, Romania

Abstract

Some MHD unidirectional motions of the electrically conducting incompressible Maxwell fluids between infinite horizontal parallel plates incorporated in a porous medium are analytically and graphically investigated when differential expressions of the non-trivial shear stress are prescribed on the boundary. Such boundary conditions are usually necessary in order to formulate well-posed boundary value problems for motions of rate-type fluids. General closed-form expressions are established for the dimensionless fluid velocity, the corresponding shear stress, and Darcy’s resistance. For completion, as well as for comparison, all results are extended to a fractional model of Maxwell fluids in which the time fractional Caputo derivative is used. It is proven for the first time that a large class of unsteady motions of the fractional incompressible Maxwell fluids becomes steady in time. For illustration, three particular motions are considered, and the correctness of the results is graphically proven. They correspond to constant or oscillatory values of the differential expression of shear stress on the boundary. In the first case, the required time to reach the steady state is graphically determined. This time declines for increasing values of the fractional parameter. Consequently, the steady state is reached earlier for motions of the ordinary fluids in comparison with the fractional ones. Finally, the fluid velocity, shear stress, and Darcy’s resistance are graphically represented and discussed for the fractional model.

Publisher

MDPI AG

Reference29 articles.

1. Ferry, J.D. (1980). Viscoelastic Properties of Polymers, John Wiley & Sons. [3rd ed.].

2. On the dynamical theory of gases;Maxwell;Philos. Trans. R. Soc.,1867

3. Böhme, G. (2000). Stromungsmechanik Nicht-Newtonscher Fluide, Verlag B.G. Teubner.

4. Non-steady helical flow of a visco-elastic liquid;Srivastava;Arch. Mech. Stos.,1966

5. Analytical study of oscillatory flow of Maxwell fluid through a rectangular tube;Wang;Phys. Fluids,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3