Use of Parallel ResNet for High-Performance Pavement Crack Detection and Measurement

Author:

Fan Zhun,Lin HuibiaoORCID,Li Chong,Su Jian,Bruno SalvatoreORCID,Loprencipe GiuseppeORCID

Abstract

In the process of road pavement health and safety assessment, crack detection plays a pivotal role in a preventive maintenance strategy. Recently, Convolutional Neural Networks (CNNs) have been applied to automatically identify the cracks on concrete pavements. The effectiveness of a CNN-based road crack detection and measurement method depends on several factors, including the image segmentation of cracks with complex topology, the inference of noises with similar texture to the distress, and the sensitivity to thin cracks. The presence of shadows, strong light reflections, and road markings can also severely affect the accuracy in detection and measurement. In this study, a review of the state-of-the-art CNN methods for crack identification is presented, paying attention to existing limitations. Then, a novel deep residual convolutional neural network (Parallel ResNet) is proposed with the aim of creating a high-performance pavement crack detection and measurement system. The challenge and special feature of Parallel ResNet is to remove the noise inference, identifying even thin and complex cracks correctly. The performance of Parallel ResNet has been investigated on two publicly available datasets (CrackTree200 and CFD), comparing it with that of competing methods suggested in the literature. Parallel ResNet reached the maximum scores in Precision (94.27%), Recall (92.52%), and F1 (93.08%) using the CrackTree200 dataset. Similarly, for the CFD dataset the novel method achieved high values in Precision (96.21%), Recall (95.12%), and F1 (95.63%). Based on the crack detection and image recognition results, mathematical morphology was then used to further minimize noise and accurately segment the road diseases, obtaining the outer contours of the connected domain in crack images. Therefore, crack skeletons have been extracted to measure the distress length, width, and area on images of rigid pavements. The experimental results show that Parallel ResNet can effectively minimize noise to obtain the geometry of cracks. The results of crack characteristic measurements are accurate and Parallel ResNet can be assumed as a reliable method in pavement crack image analysis, in order to plan the best road maintenance strategy.

Funder

Science and Technology Planning Project of Guangdong Province of China

State Key Lab of Digital Manufacturing Equipment and Technology

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3