Multi-Band MIMO Antenna Design with User-Impact Investigation for 4G and 5G Mobile Terminals

Author:

Ojaroudi Parchin Naser,Jahanbakhsh Basherlou Haleh,Al-Yasir Yasir I. A.,Ullah Atta,Abd-Alhameed Raed A.ORCID,Noras James M.

Abstract

In this study, we propose a design of a multi-band slot antenna array applicable for fourth-generation (4G) and fifth-generation (5G) smartphones. The design is composed of double-element square-ring slot radiators fed by microstrip-line structures for easy integration with radio frequency (RF)/microwave circuitry. The slot radiators are located on the corners of the smartphone printed circuit board (PCB) with an overall dimension of 75 × 150 mm2. The proposed multiple-input multiple-output (MIMO) antenna is designed to meet the requirements of 4G and 5G mobile terminals with essential bandwidth for higher data rate applications. For −10 dB impedance bandwidth, each single-element of the proposed MIMO design can cover the frequency ranges of 2.5–2.7 GHz (long-term evolution (LTE) 2600), 3.45–3.8 GHz (LTE bands 42/43), and 5.00–5.45 GHz (LTE band 46). However, for −6 dB impedance bandwidth, the radiation elements cover the frequency ranges of 2.45–2.82 GHz, 3.35–4.00 GHz, and 4.93–5.73 GHz. By employing the microstrip feed lines at the four different sides of smartphone PCB, the isolation of the radiators has been enhanced and shows better than 17 dB isolation levels over all operational bands. The MIMO antenna is implemented on an FR-4 dielectric and provides good properties including S-parameters, efficiency, and radiation pattern coverage. The performance of the antenna is validated by measurements of the prototype. The simulation results for user-hand/user-head impacts and specific absorption rate (SAR) levels of the antenna are discussed, and good results are achieved. In addition, the antenna elements have the potential to be used as 8-element/dual-polarized resonators.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference26 articles.

1. Design of 5G Full Dimension Massive MIMO Systems

2. Massive MIMO Meet Small Cell;Yang,2017

3. Scenarios for 5G mobile and wireless communications: the vision of the METIS project

4. Statement: Improving Consumer Access to Mobile Services at 3.6 GHz to 3.8 GHzhttps://www.ofcom.org.uk/consultations-and-statements/category-1/future-use-at-3.6-3.8-ghz

5. Eight-Port Orthogonally Dual-Polarized Antenna Array for 5G Smartphone Applications

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3