Monitoring and Evaluation of Eco-Environment Quality Based on Remote Sensing-Based Ecological Index (RSEI) in Taihu Lake Basin, China

Author:

Zhou Jianbo,Liu Wanqing

Abstract

Rapid and effective access to the spatiotemporal patterns and evolutionary trends of the regional eco-environment is key to regional environment protection and planning. Based on the Google Earth Engine platform, we use 165 Landsat images from the summer and autumn seasons (May–November) of 2000, 2010, and 2018 as data sources to calculate the RSEI, which represents the quality of the eco-environment, and then analyze the factors influencing the spatial heterogeneity of the eco-environment and the relationship between eco-environment and land-use changes based on RSEI. The results showed the following: (1) From 2000 to 2018, the overall ecological environment quality of the Taihu Lake Basin showed a stage of rapid decline (2000–2010) and a stage of slow decline (2010–2018). (2) The factors were ranked in order of their explanatory power for the spatial heterogeneity of the RSEI: land-use (0.594) > population density (0.418) > slope (0.309) > elevation (0.308) > GDP (0.304) > temperature (0.233) > precipitation (0.208). An interactive effect was found for each factor of the RSEI, which is mainly represented by a mutual enhancement. (3) From 2000 to 2010, the rapid urban expansion was the main reason for the deterioration of ecological quality. From 2010 to 2018, urban expansion slowed down, and the trend of ecological quality deterioration was effectively curbed. Therefore, promoting the intensive use of land and reducing construction land expansion are key to ensuring sustainable regional socio-economic development.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3