Advanced Integration of Glutathione-Functionalized Optical Fiber SPR Sensor for Ultra-Sensitive Detection of Lead Ions

Author:

Wang Jiale1,Niu Kunpeng1,Hou Jianguo1,Zhuang Ziyang1,Zhu Jiayi1,Jing Xinyue1,Wang Ning1ORCID,Xia Binyun1ORCID,Lei Lei2

Affiliation:

1. National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China

2. Zhongshan Institute of Modern Industrial Technology of SCUT, South China University of Technology, Zhongshan 528400, China

Abstract

It is crucial to detect Pb2+ accurately and rapidly. This work proposes an ultra-sensitive optical fiber surface plasmon resonance (SPR) sensor functionalized with glutathione (GSH) for label-free detection of the ultra-low Pb2+ concentration, in which the refractive index (RI) sensitivity of the multimode-singlemode-multimode (MSM) hetero-core fiber is largely enhanced by the gold nanoparticles (AuNPs)/Au film coupling SPR effect. The GSH is modified on the fiber as the sensing probe to capture and identify Pb2+ specifically. Its working principle is that the Pb2+ chemically reacts with deprotonated carboxyl groups in GSH through ligand bonding, resulting in the formation of stable and specific chelates, inducing the variation of the local RI on the sensor surface, which in turn leads to the SPR wavelength shift in the transmission spectrum. Attributing to the AuNPs, both the Au substrates can be fully functionalized with the GSH molecules as the probes, which largely increases the number of active sites for Pb2+ trapping. Combined with the SPR effect, the sensor achieves a sensitivity of 2.32 × 1011 nm/M and a limit of detection (LOD) of 0.43 pM. It also demonstrates exceptional specificity, stability, and reproducibility, making it suitable for various applications in water pollution, biomedicine, and food safety.

Funder

Science and Technology Major Project of Hubei Province, China

the Knowledge Innovation Program of Wuhan-Basic Research

the second batch of special funds for scientific and Technological Development in Zhongshan

Transverse research project of ZhongShan BacSense Technology Limited Company

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3