The Effect of Replacing Ni with Mn on the Microstructure and Properties of Al2O3-Forming Austenitic Stainless Steels: A Review

Author:

Chen Guoshuai1,Du Shang1,Zhou Zhangjian1ORCID

Affiliation:

1. School of Materials Science and Engineering, University of Science and Technology Beijing, Xueyuan Road 30, Haidian District, Beijing 100083, China

Abstract

Al2O3-forming austenitic steel (AFA steel) is an important candidate material for advanced reactor core components due to its excellent corrosion resistance and high temperature strength. Al is a strong ferrite-forming element. Therefore, it is necessary to increase the Ni content to stabilize austenite. Ni is expensive and highly active, and so increasing the Ni content not only increases the costs but also damages the radiation resistance. Mn is a low-cost austenitic stable element. Its substitution for Ni will not only help to improve the irradiation resistance of austenitic steel, but also reduce the cost. In order to explore the feasibility of Mn-substituted Ni-stabilized austenite in AFA steel, this paper summarized the research progress of Mn-added AFA steels, whilst the research status of traditional Mn-added austenitic steels are also referred to and compared herein. The effect of the addition of Mn on the microstructure and properties of AFA steel was analyzed. The results show that Mn can promote the precipitation of the M23C6 phase and inhibit the precipitation of the B2-NiAl phase and secondary NbC phase. With the increase in Mn content, the strength of AFA steel at room temperature and high temperature decreased slightly, the room temperature elongation increased slightly, while the high temperature elongation and creep resistance decreased obviously. In addition, for austenitic steel free of Al, the addition of Mn will destroy the oxide layer of Cr2O3, which will decrease the oxidation resistance of the steel. But the preliminary study shows that Mn has little effect on the Al2O3 oxide layer. It is worth studying the effect of Mn-substituted Ni on the oxidation resistance of AFA steel. In summary, more efforts are necessary to investigate the optimal Mn content to balance the advantages and disadvantages of introducing Mn instead of Ni.

Funder

National Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3