Daily Living Activity Recognition with Frequency-Shift WiFi Backscatter Tags

Author:

Iseda Hikoto1ORCID,Yasumoto Keiichi2ORCID,Uchiyama Akira3ORCID,Higashino Teruo4ORCID

Affiliation:

1. Department of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan

2. RIKEN Center for Advanced Intelligence Project AIP, 1-4-1 Nihon-bashi, Tokyo 103-0027, Japan

3. Graduate School of Information Science and Technology, Osaka University, 1-5 Yamada-oka, Suita 565-0871, Japan

4. Faculty of Engineering, Kyoto Tachibana University, 34 Yamada-cho, Oyake, Yamashina-ku, Kyoto 607-8175, Japan

Abstract

To provide diverse in-home services like elderly care, versatile activity recognition technology is essential. Radio-based methods, including WiFi CSI, RFID, and backscatter communication, are preferred due to their minimal privacy intrusion, reduced physical burden, and low maintenance costs. However, these methods face challenges, including environmental dependence, proximity limitations between the device and the user, and untested accuracy amidst various radio obstacles such as furniture, appliances, walls, and other radio waves. In this paper, we propose a frequency-shift backscatter tag-based in-home activity recognition method and test its feasibility in a near-real residential setting. Consisting of simple components such as antennas and switches, these tags facilitate ultra-low power consumption and demonstrate robustness against environmental noise because a context corresponding to a tag can be obtained by only observing frequency shifts. We implemented a sensing system consisting of SD-WiFi, a software-defined WiFi AP, and physical switches on backscatter tags tailored for detecting the movements of daily objects. Our experiments demonstrate that frequency shifts by tags can be detected within a 2 m range with 72% accuracy under the line of sight (LoS) conditions and achieve a 96.0% accuracy (F-score) in recognizing seven typical daily living activities with an appropriate receiver/transmitter layout. Furthermore, in an additional experiment, we confirmed that increasing the number of overlaying packets enables frequency shift-detection even without LoS at distances of 3–5 m.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3