3D Numerical Simulation of a Z Gate Layout MOSFET for Radiation Tolerance

Author:

Wang Ying,Shan Chan,Piao Wei,Li Xing-ji,Yang Jian-qun,Cao Fei,Yu Cheng-hao

Abstract

In this paper, for the first time, an n-channel metal-oxide-semiconductor field-effect transistor (NMOSFET) layout with a Z gate and an improved total ionizing dose (TID) tolerance is proposed. The novel layout can be radiation-hardened with a fixed charge density at the shallow trench isolation (STI) of 3.5 × 1012 cm−2. Moreover, it has the advantages of a small footprint, no limitation in W/L design, and a small gate capacitance compared with the enclosed gate layout. Beside the Z gate layout, a non-radiation-hardened single gate layout and a radiation-hardened enclosed gate layout are simulated using the Sentaurus 3D technology computer-aided design (TCAD) software. First, the transfer characteristics curves (Id-Vg) curves of the three layouts are compared to verify the radiation tolerance characteristic of the Z gate layout; then, the threshold voltage and the leakage current of the three layouts are extracted to compare their TID responses. Lastly, the threshold voltage shift and the leakage current increment at different radiation doses for the three layouts are presented and analyzed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hourglass transistor: An alternative and improved MOS structure robust to total ionization dose radiation;Microelectronics Journal;2024-10

2. Hourglass Transistor: An Alternative and Improved Mos Structure Robust to Total Ionization Dose Radiation;2024

3. Hourglass and Semi-Hourglass layout techniques to improve radiation hardening of NMOS devices;2023 20th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE);2023-10-25

4. Design and fabrication results of Z-gate layout MOSFETs for radiation hardness integrated circuit;Japanese Journal of Applied Physics;2023-01-31

5. An n-MOSFET Layout with Multi-Finger Z Gate for Radiation Tolerance;2022 IEEE 5th International Conference on Knowledge Innovation and Invention (ICKII );2022-07-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3