Fast Shape Recognition via the Restraint Reduction of Bone Point Segment

Author:

Li ZekunORCID,Guo Baolong,Meng Fanjie

Abstract

In computer science, and especially in computer vision, the contour of an object is used to describe its features; thus, the shape descriptor plays an indispensable role in target detection and recognition. Further, Fourier is an important mathematical description method, and the Fourier transform of a shape contour has symmetry. This paper will demonstrate the symmetry of shape contour in the frequency domain. In recent years, increasing numbers of shape descriptors have come to the fore, but many descriptors ignore the details of shape. It is found that the most fundamental reason affecting the performance of shape descriptors is structural restraints, especially feature structure restraint. Therefore, in this paper, the restraint of feature structure that intrinsically deteriorates recognition performance is shown, and a fast shape recognition method via the Bone Point Segment (BPS) restraint reduction is proposed. An approach using the inner distance to find bone shapes and segment the shape contour by these bones is proposed. Then, Fourier transform is performed on each segment to form the shape feature. Finally, the restraints of the shape feature are reduced in order to build a more effective shape feature. What is commendable is that its discriminability and robustness is strong, the process is simple, and matching speed is fast. More importantly, the experiment results show that the shape descriptor has higher recognition accuracy and the matching speed runs up to more than 1000 times faster than the existing description methods like CBW and TCD. More importantly, it is worth noting that the recognition accuracy approaches 100% in the self-build dataset.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi Province of China

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference43 articles.

1. Learning context-sensitive shape similarity by graph transduction;Bai;IEEE Trans. Pattern Anal. Mach. Intell.,2009

2. Sparse Contextual Activation for Efficient Visual Re-Ranking

3. Shape matching and object recognition using shape contexts

4. Applying Machine Learning to Ultrafast Shape Recognition in Ligand-Based Virtual Screening

5. A multi-angle shape descriptor with the distance ratio to vertical bounding rectangles;Li;Proceedings of the 2021 International Conference on Content-Based Multimedia Indexing (CBMI),2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3