Magneto-Hydrodynamic Flow above Exponentially Stretchable Surface with Chemical Reaction

Author:

Arshad MubasharORCID,Hussain Azad,Elfasakhany Ashraf,Gouadria Soumaya,Awrejcewicz JanORCID,Pawłowski WitoldORCID,Elkotb Mohamed Abdelghany,M. Alharbi Fahad

Abstract

This article is focused on investigating the convective magneto-hydrodynamic single-phase flow for comparative analysis of two different base fluids above an exponentially stretchable porous surface under the effect of the chemical reaction. The Buongiorno fluid model is incorporated to observe the Thermophoresis and Brownian diffusion in this study. Boussinesq approximation for temperature and concentration are accounted for flow to be naturally convective. In this study, water and ethanol are assumed for comparative analysis. Additionally, to achieve the outcomes of the designed three-dimensional flow boundary value, problem technique is employed to simulate the problem in MATLAB. Increase in the magnetic field, thermophoresis diffusion, temperature exponent, and Prandtl number expand thermal boundary, whereas contraction is observed with an increase in porosity. Shear stress rates in respective directions have decreased with an increase in the stretching ratio of the surface. Moreover, through comparison, reasonably enhanced Nusselt number is observed for water under influence of study parameters while the Nusselt number abruptly decreases for ethanol. High mass coefficients are observed for both examined fluids.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3