The Mechanical Response of Structural Elements in Enclosed Structures during Electric Vehicle Fires: A Computational Study

Author:

La Scala Armando1ORCID,Loprieno Pierpaolo2ORCID,Foti Dora1ORCID,La Scala Massimo3ORCID

Affiliation:

1. Dipartimento di Architettura Costruzione e Design, Polytechnic of Bari, 70125 Bari, Italy

2. Dipartimento di Ingegneria dell’Innovazione, Università del Salento, 73100 Lecce, Italy

3. Dipartimento di Ingegneria Elettrica e dell’Informazione, Polytechnic of Bari, 70125 Bari, Italy

Abstract

Due to their reduced emissions and environmental benefits, electric vehicles (EVs) have grown in popularity over the past few years. However, EV fires can be a serious threat to nearby buildings, especially in garages where they are parked and charged. In this work, the behavior of the steel structural components in garages during electric car fires is computationally analyzed. To simulate the heat transmission and the structural reaction of a typical garage exposed to an EV fire, a finite element model was created. A comparison was made between the risk associated with fires generated by internal combustion vehicles (ICEVs) and EVs, with the elaboration of a risk index based on the deflections reached by a steel column under fire conditions. The model predictions are based on experimental data retrieved from various literature investigations, as well as regulatory simplified methods. The study conclusions provide information on how EV and ICEV fires affected garage performance, which may be used to design more resilient and safer buildings. The method represents a good compromise between the typical performance-based approaches and the tabular ones, characterized by good accuracy and low computational burden. This allows the professional to design optimized structures without wasting material and unnecessary coatings with their additional permanent loads, which could be detrimental in the case of other exceptional actions such as earthquakes.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3