State-of-Charge Estimation of Nickel–Cadmium Batteries Based on Dynamic Modeling of Electrical Characteristics and Adaptive Untrace Kalman Filtering

Author:

Meng Meng1,He Yiguo2,Zhang Yin1,Liao Haitao2,Dai Chaohua2

Affiliation:

1. CRRC Qingdao Sifang Co., Ltd., Qingdao 266111, China

2. School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China

Abstract

With the increasing demand for intelligence and automation, and the continuous strengthening of safety and efficiency requirements, the disadvantages of traditional “blind use” of nickel–cadmium batteries have become increasingly prominent, and the lack of state-of-charge (SOC) estimation needs to be changed urgently. For this purpose, a dynamic model of nickel–cadmium battery is established, and an SOC estimation method of nickel–cadmium battery based on adaptive untraced Kalman filter is proposed. Firstly, the experimental platform was built, and the open-circuit voltage and polarization characteristics of nickel–cadmium batteries were analyzed. On this basis, an equivalent circuit model is constructed to reflect the characteristics of nickel–cadmium batteries, and the model parameters were identified by the hybrid pulse power characteristic test; Then, based on the dynamic model, the SOC of the nickel–cadmium battery was estimated by combining with the Sage–Husa adaptive untrace Kalman filtering algorithm. Finally, the SOC estimation effect was verified under two operating conditions: Hybrid pulse power characteristic (HPPC) and constant cyclic charging and discharging power. The experimental results show that the proposed estimation method is insensitive to the initial value of SOC, and can still converge to the real value even if there is 30% error in the initial value. The mean absolute error and root mean square deviation of the final SOC estimation results are both less than 1%. The dynamic model and the proposed SOC estimation method provide valuable reference for the operation control, maintenance, and replacement of nickel–cadmium batteries in the use process.

Funder

Beijing Natural Science Foundation-Fengtai Rail Transit Frontier Research Joint Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. Progress in niobium-based oxides as anode for fast-charging Li-ion batteries;Xie;Energy Rev.,2023

2. Adsorption-based synthesis of Co3O4/C composite anode for high performance lithium-ion batteries;Wang;Energy,2017

3. Study on application of new energy technology on railway vehicles;Mu;Smart Rail Transit,2021

4. Review of auxiliary power supply batteries systems for railway applications;Long;Chin. Battery Ind.,2021

5. Comparative analysis of electric vehicle BMS related standards based on SOC estimation accuracy experiments;Wang;Qual. Certif.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3