Optimising Highway Energy Harvesting: A Numerical Simulation Study on Factors Influencing the Performance of Vertical-Axis Wind Turbines

Author:

Lee Oliver Mitchell1ORCID,Baby Devika Koonthalakadu1ORCID

Affiliation:

1. Faculty of Environment, Science and Economy, University of Exeter, Exeter EX4 4QF, UK

Abstract

Vertical-axis wind turbines (VAWTs) are an innovative solution for energy harvesting, as they harness the power of the wind by enabling rotational motion around a vertical shaft situated on the ground. This paper deals with the design optimisation of VAWT systems for highway energy harvesting. The four design parameters, blade number, blade curvature angle, blade thickness and blade diameter ratio, have been investigated to find their respective optimalities for the enhanced energy efficiency of VAWT systems. Computational fluid dynamics (CFD) simulations are conducted in Ansys Fluent using a Banki turbine model created in Solidworks®, with a constant velocity inlet of 4 m/s and rotational speeds ranging from 0.5 to 3 rad/s. The simulations consider the placement of the turbine in the central reservation of a highway with a windshield for enhanced performance. From the results, it was observed that increasing blade thickness and blade number improve turbine performance, with maximum power coefficients achieved at specific tip speed ratios (TSRs). The optimal blade diameter ratio has been found to be approximately 0.75 for TSR values between 0.1 and 0.5, whilst a ratio of 0.83 gave the best performance at higher TSR values. Also, a blade curvature angle of 60 degrees has been found optimal for slow rotations, while 100 degrees yielded the highest power coefficient for faster rotations. The study could also highlight the significance of blade curvature angle variation, resulting in a notable 14% performance increase compared to the baseline. The geometric changes proposed in the study allow for greater power extraction from the same turbine footprint, leading to increased energy efficiency in VAWT systems.

Funder

University of Exeter

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3