Optimal Probabilistic Allocation of Photovoltaic Distributed Generation: Proposing a Scenario-Based Stochastic Programming Model

Author:

Kheirkhah Ali Reza12ORCID,Meschini Almeida Carlos Frederico2,Kagan Nelson2,Leite Jonatas Boas1ORCID

Affiliation:

1. Department of Electrical Engineering, Sao Paulo State University—UNESP, Ilha Solteira 15385-000, SP, Brazil

2. Department of Energy Engineering and Electrical Automation, University of Sao Paulo—USP, Sao Paulo 05508-020, SP, Brazil

Abstract

The recent developments in the design, planning, and operation of distribution systems indicate the need for a modern integrated infrastructure in which participants are managed through the perceptions of a utility company in an economic network (e.g., energy loss reduction, restoration, etc.). The penetration of distributed generation units in power systems are growing due to their significant influence on the key attributes of power systems. As a result, the placement, type, and size of distributed generations have an essential role in reducing power loss and lowering costs. Power loss minimization, investment and cost reduction, and voltage profile improvement combine to form a conceivable goal function for distributed generation allocation in a constrained optimization problem, and they require a complex procedure to control them in the most appropriate way while satisfying network constraints. Such a complex decision-making procedure can be solved by adjusting the dynamic optimal power flow problem to the associated network. The purpose of the present work is to handle the distributed generation allocation problem for photovoltaic units, attempting to reduce energy and investment costs while accounting for generation unpredictability as well as load fluctuation. The problem is analyzed under various scenarios of solar radiation through a stochastic programming technique because of the intense uncertainty of solar energy resources. The formulation of photovoltaic distributed generation allocation is represented as a mixed-integer second-order conic programming problem. The IEEE 33-bus and real-world 136-bus distribution systems are tested. The findings illustrate the efficacy of the proposed mathematical model and the role of appropriate distributed generation allocation.

Funder

Brazilian Federal Agency

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3