Affiliation:
1. Department of Electrical, Electronic and Information Engineering, University of Bologna, 40126 Bologna, Italy
Abstract
High Temperature Superconducting (HTS) dynamo flux pumps are a promising alternative to metal current leads for energization and the persistent current mode operation of high current DC superconducting magnet systems for applications in rotating machines, such as Magnetic Resonance Imaging (MRI) or fusion systems. The viability of the flux pump concept has been widely proven by laboratory experiments and research is now in progress for the design and optimization of flux pump devices for practical applications. It has been widely established that the dependence of the critical current density (Jc) on the temperature (T), the magnetic field magnitude (B), and the orientation (θ), has a substantial impact on the overall DC voltage obtained at the terminals, as well as on the current limit and the loss of the flux pump. Since HTS tapes produced by different manufacturers, they show different dependencies of Jc with the amplitude and the orientation of the magnetic field. They also give rise to different outputs when employed in flux pumps. In this paper, we evaluate and compare the performance of several commercial HTS tapes used for flux pumping purposes through numerical simulation. We also investigate the dependence of the flux pump ‘s performance on the operating temperatures. A 2D finite element numerical model is first developed and validated against experimental data at 77 K. Afterward, the same HTS dynamo apparatus used for validation is exploited for the comparison. The Jc(B,θ,T) and n(B,θ,T) relations, which characterize each different tape in the model, are reconstructed via artificial intelligence techniques based on the open-access database of the Robinson Research Institute. It is shown in the paper that certain tapes are more suitable than others for flux pump applications and that the best overall operating temperature is in the vicinity of 77 K.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference46 articles.
1. Fully superconducting rectifiers and flux pumps part 1: Realized methods for flux pumping;Cryogenics,1981
2. On fully superconducting rectifiers and fluxpumps. A review. Part 2: Commutation modes, characteristics and switches;Cryogenics,1981
3. Superconducting flux pumps;Coombs;J. Appl. Phys.,2019
4. An overview of flux pumps for HTS coils;Coombs;IEEE Trans. Appl. Supercond.,2017
5. Wen, Z., Zhang, H., and Mueller, M. (2022). High Temperature Superconducting Flux Pumps for Contactless Energization. Crystals, 12.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献