Abstract
Decoding motor intentions from non-invasive brain activity monitoring is one of the most challenging aspects in the Brain Computer Interface (BCI) field. This is especially true in online settings, where classification must be performed in real-time, contextually with the user’s movements. In this work, we use a topology-preserving input representation, which is fed to a novel combination of 3D-convolutional and recurrent deep neural networks, capable of performing multi-class continual classification of subjects’ movement intentions. Our model is able to achieve a higher accuracy than a related state-of-the-art model from literature, despite being trained in a much more restrictive setting and using only a simple form of input signal preprocessing. The results suggest that deep learning models are well suited for deployment in challenging real-time BCI applications such as movement intention recognition.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献