Haemodynamic Analysis of Branched Endografts for Complex Aortic Arch Repair

Author:

Sengupta SampadORCID,Hamady MohamadORCID,Xu Xiao-YunORCID

Abstract

This study aims to investigate the haemodynamic response induced by implantation of a double-branched endograft used in thoracic endovascular aortic repair (TEVAR) of the aortic arch. Anatomically realistic models were reconstructed from CT images obtained from patients who underwent TEVAR using the RelayPlus double-branched endograft implanted in the aortic arch. Two cases (Patient 1, Patient 2) were included here, both patients presented with type A aortic dissection before TEVAR. To examine the influence of inner tunnel branch diameters on localised flow patterns, three tunnel branch diameters were tested using the geometric model reconstructed for Patient 1. Pulsatile blood flow through the models was simulated by numerically solving the Navier–Stokes equations along with a transitional flow model. The physiological boundary conditions were imposed at the model inlet and outlets, while the wall was assumed to be rigid. Our simulation results showed that the double-branched endograft allowed for the sufficient perfusion of blood to the supra-aortic branches and restored flow patterns expected in normal aortas. The diameter of tunnel branches in the device plays a crucial role in the development of flow downstream of the branches and thus must be selected carefully based on the overall geometry of the vessel. Given the importance of wall shear stress in vascular remodelling and thrombus formation, longitudinal studies should be performed in the future in order to elucidate the role of tunnel branch diameters in long-term patency of the supra-aortic branches following TEVAR with the double-branched endograft.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Bioengineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3