Abstract
Background: Midpalatal suture maturation and ossification status is the basis for appraising maxillary transverse developmental status. Methods: We established a midpalatal suture cone-beam computed tomography (CBCT) normalized database of the growth population, including 1006 CBCT files from 690 participants younger than 24 years old. The midpalatal suture region of interest (ROI) labeling was completed by two experienced clinical experts. The CBCT image fusion algorithm and image texture feature analysis algorithm were constructed and optimized. The age range prediction convolutional neural network (CNN) was conducted and tested. Results: The midpalatal suture fusion images contain complete semantic information for appraising midpalatal suture maturation and ossification status during the fast growth and development period. Correlation and homogeneity are the two texture features with the strongest relevance to chronological age. The overall performance of the age range prediction CNN model is satisfactory, especially in the 4 to 10 years range and the 17 to 23 years range, while for the 13 to 14 years range, the model performance is compromised. Conclusions: The image fusion algorithm can help show the overall perspective of the midpalatal suture in one fused image effectively. Furthermore, clinical decisions for maxillary transverse deficiency should be appraised by midpalatal suture image features directly rather than by age, especially in the 13 to 14 years range.
Funder
Respiratory Research Project of National Clinical Research Center for Respiratory Diseases
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献