Author:
Sorg Heiko,Tilkorn Daniel J.,Hauser Jörg,Ring Andrej
Abstract
Artificial tissue substitutes are of great interest for the reconstruction of destroyed and non-functional skin or bone tissue due to its scarcity. Biomaterials used as scaffolds for tissue regeneration are non-vascularized synthetic tissues and often based on polymers, which need ingrowth of new blood vessels to ensure nutrition and metabolism. This review summarizes previous approaches and highlights advances in vascularization strategies after implantation of surface-modified biomaterials for skin and bone tissue regeneration. The efficient integration of biomaterial, bioactive coating with endogenous degradable matrix proteins, physiochemical modifications, or surface geometry changes represents promising approaches. The results show that the induction of angiogenesis in the implant site as well as the vascularization of biomaterials can be influenced by specific surface modifications. The neovascularization of a biomaterial can be supported by the application of pro-angiogenic substances as well as by biomimetic surface coatings and physical or chemical surface activations. Furthermore, it was confirmed that the geometric properties of the three-dimensional biomaterial matrix play a central role, as they guide or even enable the ingrowth of blood vessels into a biomaterial.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献