Difficult Airway Assessment Based on Multi-View Metric Learning

Author:

Wu Jinze1,Yao Yuan2,Zhang Guangchao3,Li Xiaofan1,Peng Bo1ORCID

Affiliation:

1. School of Computing and Artificial Intelligence, Southwest Jiaotong University, Chengdu 611756, China

2. General Practice Medical Center, West China Hospital, Sichuan University, Chengdu 610044, China

3. Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610044, China

Abstract

The preoperative assessment of difficult airways is of great significance in the practice of anesthesia intubation. In recent years, although a large number of difficult airway recognition algorithms have been investigated, defects such as low recognition accuracy and poor recognition reliability still exist. In this paper, we propose a Dual-Path Multi-View Fusion Network (DMF-Net) based on multi-view metric learning, which aims to predict difficult airways through multi-view facial images of patients. DMF-Net adopts a dual-path structure to extract features by grouping the frontal and lateral images of the patients. Meanwhile, a Multi-Scale Feature Fusion Module and a Hybrid Co-Attention Module are designed to improve the feature representation ability of the model. Consistency loss and complementarity loss are utilized fully for the complementarity and consistency of information between multi-view data. Combined with Focal Loss, information bias is effectively avoided. Experimental validation illustrates the effectiveness of the proposed method, with the accuracy, specificity, sensitivity, and F1 score reaching 77.92%, 75.62%, 82.50%, and 71.35%, respectively. Compared with methods such as clinical bedside screening tests and existing artificial intelligence-based methods, our method is more accurate and reliable and can provide a reliable auxiliary tool for clinical healthcare personnel to effectively improve the accuracy and reliability of preoperative difficult airway assessments. The proposed network can help to identify and assess the risk of difficult airways in patients before surgery and reduce the incidence of postoperative complications.

Funder

Sichuan Science and Technology Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3