Continuous Detection of Stimulus Brightness Differences Using Visual Evoked Potentials in Healthy Volunteers with Closed Eyes

Author:

Kalb Stephan1,Böck Carl2ORCID,Bolz Matthias3,Schlömmer Christine1,Kudumija Lucija1,Dünser Martin W.1,Meier Jens1ORCID

Affiliation:

1. Department of Anesthesiology and Intensive Care Medicine, Kepler University Hospital GmbH, Johannes Kepler University Linz, 4040 Linz, Austria

2. JKU Linz Institute of Technology SAL eSPML Lab, Institute of Signal Processing, Johannes Kepler University Linz, 4040 Linz, Austria

3. JKU Department of Ophthalmology, Kepler University Hospital GmbH, Johannes Kepler University Linz, 4040 Linz, Austria

Abstract

Background/Objectives: We defined the value of a machine learning algorithm to distinguish between the EEG response to no light or any light stimulations, and between light stimulations with different brightnesses in awake volunteers with closed eyelids. This new method utilizing EEG analysis is visionary in the understanding of visual signal processing and will facilitate the deepening of our knowledge concerning anesthetic research. Methods: X-gradient boosting models were used to classify the cortical response to visual stimulation (no light vs. light stimulations and two lights with different brightnesses). For each of the two classifications, three scenarios were tested: training and prediction in all participants (all), training and prediction in one participant (individual), and training across all but one participant with prediction performed in the participant left out (one out). Results: Ninety-four Caucasian adults were included. The machine learning algorithm had a very high predictive value and accuracy in differentiating between no light and any light stimulations (AUCROCall: 0.96; accuracyall: 0.94; AUCROCindividual: 0.96 ± 0.05, accuracyindividual: 0.94 ± 0.05; AUCROConeout: 0.98 ± 0.04; accuracyoneout: 0.96 ± 0.04). The machine learning algorithm was highly predictive and accurate in distinguishing between light stimulations with different brightnesses (AUCROCall: 0.97; accuracyall: 0.91; AUCROCindividual: 0.98 ± 0.04, accuracyindividual: 0.96 ± 0.04; AUCROConeout: 0.96 ± 0.05; accuracyoneout: 0.93 ± 0.06). The predictive value and accuracy of both classification tasks was comparable between males and females. Conclusions: Machine learning algorithms could almost continuously and reliably differentiate between the cortical EEG responses to no light or light stimulations using visual evoked potentials in awake female and male volunteers with eyes closed. Our findings may open new possibilities for the use of visual evoked potentials in the clinical and intraoperative setting.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3