CA-ViT: Contour-Guided and Augmented Vision Transformers to Enhance Glaucoma Classification Using Fundus Images

Author:

Tohye Tewodros Gizaw1ORCID,Qin Zhiguang1,Al-antari Mugahed A.2ORCID,Ukwuoma Chiagoziem C.34ORCID,Lonseko Zenebe Markos5ORCID,Gu Yeong Hyeon2ORCID

Affiliation:

1. School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

2. Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea

3. College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059, China

4. Sichuan Engineering Technology Research Center for Industrial Internet Intelligent Monitoring and Application, Chengdu University of Technology, Chengdu 610059, China

5. School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China

Abstract

Glaucoma, a predominant cause of visual impairment on a global scale, poses notable challenges in diagnosis owing to its initially asymptomatic presentation. Early identification is vital to prevent irreversible vision impairment. Cutting-edge deep learning techniques, such as vision transformers (ViTs), have been employed to tackle the challenge of early glaucoma detection. Nevertheless, limited approaches have been suggested to improve glaucoma classification due to issues like inadequate training data, variations in feature distribution, and the overall quality of samples. Furthermore, fundus images display significant similarities and slight discrepancies in lesion sizes, complicating glaucoma classification when utilizing ViTs. To address these obstacles, we introduce the contour-guided and augmented vision transformer (CA-ViT) for enhanced glaucoma classification using fundus images. We employ a Conditional Variational Generative Adversarial Network (CVGAN) to enhance and diversify the training dataset by incorporating conditional sample generation and reconstruction. Subsequently, a contour-guided approach is integrated to offer crucial insights into the disease, particularly concerning the optic disc and optic cup regions. Both the original images and extracted contours are given to the ViT backbone; then, feature alignment is performed with a weighted cross-entropy loss. Finally, in the inference phase, the ViT backbone, trained on the original fundus images and augmented data, is used for multi-class glaucoma categorization. By utilizing the Standardized Multi-Channel Dataset for Glaucoma (SMDG), which encompasses various datasets (e.g., EYEPACS, DRISHTI-GS, RIM-ONE, REFUGE), we conducted thorough testing. The results indicate that the proposed CA-ViT model significantly outperforms current methods, achieving a precision of 93.0%, a recall of 93.08%, an F1 score of 92.9%, and an accuracy of 93.0%. Therefore, the integration of augmentation with the CVGAN and contour guidance can effectively enhance glaucoma classification tasks.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3