Tuning Mechanical Characteristics and Permeability of Alginate Hydrogel by Polyvinyl Alcohol and Deep Eutectic Solvent Addition

Author:

Menegatti Tadej1,Kopač Tilen1,Žnidaršič-Plazl Polona12ORCID

Affiliation:

1. Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia

2. Chair of Micro Process Engineering and Technology—COMPETE, University of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia

Abstract

Alginate-based hydrogels are widely utilized for various applications, including enzyme immobilization and the development of drug delivery systems, owing to their advantageous characteristics, such as low toxicity, high availability and cost-effectiveness. However, the broad applicability of alginate hydrogels is hindered by their limited mechanical and chemical stability, as well as their poor permeability to hydrophobic molecules. In this study, we addressed the mechanical properties and chemical resistance of alginate hydrogels in a high-pKa environment by the copolymerization of alginate with polyvinyl alcohol (PVA). The addition of PVA resulted in a threefold improvement in the shear modulus of the copolymeric hydrogel, as well as enhanced chemical resistance to (S)-α-methylbenzylamine, a model molecule with a high pKa value. Furthermore, we addressed the permeability challenge by introducing a betaine–propylene glycol deep eutectic solvent (DES) into the PVA-alginate copolymer. This led to an increased permeability for ethyl 3-oxobutanoate, a model molecule used for bioreduction to chiral alcohols. Moreover, the addition of the DES resulted in a notable improvement of the shear modulus of the resulting hydrogel. This dual effect highlights the role of the DES in achieving the desired improvement of the hydrogel as an immobilization carrier.

Funder

Slovenian Research and Innovation Agency

Ministry of Higher Education, Science and Innovation

EU Horizon 2020 M.ERA.net

EU Horizon 2020 ERA Chair project COMPETE

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3