A Convolutional Neural Network for SSVEP Identification by Using a Few-Channel EEG

Author:

Li Xiaodong12,Yang Shuoheng12,Fei Ningbo2ORCID,Wang Junlin12,Huang Wei3,Hu Yong123ORCID

Affiliation:

1. Orthopedics Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China

2. Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China

3. Department of Rehabilitation, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang 524003, China

Abstract

The application of wearable electroencephalogram (EEG) devices is growing in brain–computer interfaces (BCI) owing to their good wearability and portability. Compared with conventional devices, wearable devices typically support fewer EEG channels. Devices with few-channel EEGs have been proven to be available for steady-state visual evoked potential (SSVEP)-based BCI. However, fewer-channel EEGs can cause the BCI performance to decrease. To address this issue, an attention-based complex spectrum–convolutional neural network (atten-CCNN) is proposed in this study, which combines a CNN with a squeeze-and-excitation block and uses the spectrum of the EEG signal as the input. The proposed model was assessed on a wearable 40-class dataset and a public 12-class dataset under subject-independent and subject-dependent conditions. The results show that whether using a three-channel EEG or single-channel EEG for SSVEP identification, atten-CCNN outperformed the baseline models, indicating that the new model can effectively enhance the performance of SSVEP-BCI with few-channel EEGs. Therefore, this SSVEP identification algorithm based on a few-channel EEG is particularly suitable for use with wearable EEG devices.

Funder

Shenzhen Science and Technology Program

Zhanjiang Competitive Allocation of Special Funds for Scientific and Technological Development

Sanming Project of Medicine in Shenzhen

Shenzhen Key Medical Discipline Construction Fund

Health Commission of Guangdong Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3