Closed-Loop Transcranial Electrical Neurostimulation for Sustained Attention Enhancement: A Pilot Study towards Personalized Intervention Strategies

Author:

Caravati Emma1,Barbeni Federica1,Chiarion Giovanni1ORCID,Raggi Matteo1ORCID,Mesin Luca1ORCID

Affiliation:

1. Mathematical Biology and Physiology, Department Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy

Abstract

Sustained attention is pivotal for tasks like studying and working for which focus and low distractions are necessary for peak productivity. This study explores the effectiveness of adaptive transcranial direct current stimulation (tDCS) in either the frontal or parietal region to enhance sustained attention. The research involved ten healthy university students performing the Continuous Performance Task-AX (AX-CPT) while receiving either frontal or parietal tDCS. The study comprised three phases. First, we acquired the electroencephalography (EEG) signal to identify the most suitable metrics related to attention states. Among different spectral and complexity metrics computed on 3 s epochs of EEG, the Fuzzy Entropy and Multiscale Sample Entropy Index of frontal channels were selected. Secondly, we assessed how tDCS at a fixed 1.0 mA current affects attentional performance. Finally, a real-time experiment involving continuous metric monitoring allowed personalized dynamic optimization of the current amplitude and stimulation site (frontal or parietal). The findings reveal statistically significant improvements in mean accuracy (94.04 vs. 90.82%) and reaction times (262.93 vs. 302.03 ms) with the adaptive tDCS compared to a non-stimulation condition. Average reaction times were statistically shorter during adaptive stimulation compared to a fixed current amplitude condition (262.93 vs. 283.56 ms), while mean accuracy stayed similar (94.04 vs. 93.36%, improvement not statistically significant). Despite the limited number of subjects, this work points out the promising potential of adaptive tDCS as a tailored treatment for enhancing sustained attention.

Funder

European Union—NextGenerationEU

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3