Deep Learning Model for Computer-Aided Diagnosis of Urolithiasis Detection from Kidney–Ureter–Bladder Images

Author:

Liu Yi-Yang,Huang Zih-HaoORCID,Huang Ko-WeiORCID

Abstract

Kidney–ureter–bladder (KUB) imaging is a radiological examination with a low cost, low radiation, and convenience. Although emergency room clinicians can arrange KUB images easily as a first-line examination for patients with suspicious urolithiasis, interpreting the KUB images correctly is difficult for inexperienced clinicians. Obtaining a formal radiology report immediately after a KUB imaging examination can also be challenging. Recently, artificial-intelligence-based computer-aided diagnosis (CAD) systems have been developed to help clinicians who are not experts make correct diagnoses for further treatment more effectively. Therefore, in this study, we proposed a CAD system for KUB imaging based on a deep learning model designed to help first-line emergency room clinicians diagnose urolithiasis accurately. A total of 355 KUB images were retrospectively collected from 104 patients who were diagnosed with urolithiasis at Kaohsiung Chang Gung Memorial Hospital. Then, we trained a deep learning model with a ResNet architecture to classify KUB images in terms of the presence or absence of kidney stones with this dataset of pre-processed images. Finally, we tuned the parameters and tested the model experimentally. The results show that the accuracy, sensitivity, specificity, and F1-measure of the model were 0.977, 0.953, 1, and 0.976 on the validation set and 0.982, 0.964, 1, and 0.982 on the testing set, respectively. Moreover, the results demonstrate that the proposed model performed well compared to the existing CNN-based methods and was able to detect urolithiasis in KUB images successfully. We expect the proposed approach to help emergency room clinicians make accurate diagnoses and reduce unnecessary radiation exposure from computed tomography (CT) scans, along with the associated medical costs.

Funder

Ministry of Science and Technology

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3