An Analysis of the Effects of Noisy Electrocardiogram Signal on Heartbeat Detection Performance

Author:

Mohd Apandi Ziti FarihaORCID,Ikeura RyojunORCID,Hayakawa Soichiro,Tsutsumi Shigeyoshi

Abstract

Heartbeat detection for ambulatory cardiac monitoring is more challenging as the level of noise and artefacts induced by daily-life activities are considerably higher than monitoring in a hospital setting. It is valuable to understand the relationship between the characteristics of electrocardiogram (ECG) noises and the beat detection performance in the cardiac monitoring system. For this purpose, three well-known algorithms for the beat detection process were re-implemented. The beat detection algorithms were validated using two types of ambulatory datasets, which were the ECG signal from the MIT-BIH Arrhythmia Database and the simulated noise-contaminated ECG signal with different intensities of baseline wander (BW), muscle artefact (MA) and electrode motion (EM) artefact from the MIT-BIH Noise Stress Test Database. The findings showed that signals contaminated with noise and artefacts decreased the potential of beat detection in ambulatory signal with the poorest performance noted for ECG signal affected by the EM artefacts. In conclusion, none of the algorithms was able to detect all QRS complexes without any false detection at the highest level of noise. The EM noise influenced the beat detection performance the most in comparison to the MA and BW noises that resulted in the highest number of misdetections and false detections.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3