Development of Cellular and Enzymatic Bioluminescent Assay Systems to Study Low-Dose Effects of Thorium

Author:

Kolesnik Olga V.,Rozhko Tatiana V.ORCID,Lapina Maria A.,Solovyev Vladislav S.,Sachkova Anna S.,Kudryasheva Nadezhda S.

Abstract

Thorium is one of the most widespread radioactive elements in natural ecosystems, along with uranium, it is the most important source of nuclear energy. However, the effects of thorium on living organisms have not been thoroughly studied. Marine luminescent bacteria and their enzymes are optimal bioassays for studying low-dose thorium exposures. Luminescent bioassays provide a quantitative measure of toxicity and are characterized by high rates, sensitivity, and simplicity. It is known that the metabolic activity of bacteria is associated with the production of reactive oxygen species (ROS). We studied the effects of thorium-232 (10−11–10−3 M) on Photobacterium phosphoreum and bacterial enzymatic reactions; kinetics of bacterial bioluminescence and ROS content were investigated in both systems. Bioluminescence activation was revealed under low-dose exposures (<0.1 Gy) and discussed in terms of “radiation hormesis”. The activation was accompanied by an intensification of the oxidation of a low-molecular reducer, NADH, during the enzymatic processes. Negative correlations were found between the intensity of bioluminescence and the content of ROS in bacteria and enzyme systems; an active role of ROS in the low-dose activation by thorium was discussed. The results contribute to radioecological potential of bioluminescence techniques adapted to study low-intensity radioactive exposures.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3