Clinical Application of Bioresorbable, Synthetic, Electrospun Matrix in Wound Healing

Author:

MacEwan Matthew,Jeng Lily,Kovács Tamás,Sallade Emily

Abstract

Electrospun polymeric matrices have long been investigated as constructs for use in regenerative medicine, yet relatively few have been commercialized for human clinical use. In 2017, a novel electrospun matrix, composed of two synthetic biocompatible polymers, polyglactin 910 (PLGA 10:90) and polydioxanone (PDO) of varying pore and fiber sizes (i.e., hybrid-scale) was developed and cleared by the FDA for human clinical use. The present review aims to explain the mechanism of action and review the preclinical and clinical results to summarize the efficacy of the matrix across multiple use cases within the wound care setting, including an assessment of over 150 wounds of varying etiologies treated with the synthetic matrix. Clinical data demonstrated effective use of the synthetic hybrid-scale fiber matrix across a variety of wound etiologies, including diabetic foot and venous leg ulcers, pressure ulcers, burns, and surgical wounds. This review represents a comprehensive clinical demonstration of a synthetic, electrospun, hybrid-scale matrix and illustrates its value and versatility across multiple wound etiologies.

Publisher

MDPI AG

Subject

Bioengineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3