Wearable Electromyography Classification of Epileptic Seizures: A Feasibility Study

Author:

Djemal Achraf12ORCID,Bouchaala Dhouha3ORCID,Fakhfakh Ahmed2,Kanoun Olfa1ORCID

Affiliation:

1. Measurement and Sensor Technology, Chemnitz University of Technology, Reichenhainer Straße 70, 09126 Chemnitz, Germany

2. Laboratory of Signals, Systems, Artificial Intelligence and Networks, Digital Research Centre of Sfax, National School of Electronics and Telecommunications of Sfax, Technopole of Sfax, Ons City 3021, Tunisia

3. National Engineering School of Sfax, University of Sfax, Route de la Soukra km 4, Sfax 3038, Tunisia

Abstract

Accurate diagnosis and classification of epileptic seizures can greatly support patient treatments. As many epileptic seizures are convulsive and have a motor component, the analysis of muscle activity can provide valuable information for seizure classification. Therefore, this paper present a feasibility study conducted on healthy volunteers, focusing on tracking epileptic seizures movements using surface electromyography signals (sEMG) measured on human limb muscles. For the experimental studies, first, compact wireless sensor nodes were developed for real-time measurement of sEMG on the gastrocnemius, flexor carpi ulnaris, biceps brachii, and quadriceps muscles on the right side and the left side. For the classification of the seizure, a machine learning model has been elaborated. The 16 common sEMG time-domain features were first extracted and examined with respect to discrimination and redundancy. This allowed the features to be classified into irrelevant features, important features, and redundant features. Redundant features were examined with the Big-O notation method and with the average execution time method to select the feature that leads to lower complexity and reduced processing time. The finally selected six features were explored using different machine learning classifiers to compare the resulting classification accuracy. The results show that the artificial neural network (ANN) model with the six features: IEMG, WAMP, MYOP, SE, SKEW, and WL, had the highest classification accuracy (99.95%). A further study confirms that all the chosen eight sensors are necessary to reach this high classification accuracy.

Funder

Deutsche Forschungsgemeinschaft

German Academic Exchange Service

Chemnitz University of Technology

Publisher

MDPI AG

Subject

Bioengineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Wearable, battery-free, wireless multiplexed printed sensors for heat stroke prevention with mussel-inspired bio-adhesive membranes;Biosensors and Bioelectronics;2024-09

2. Design of an Energy Efficient Sensor Node for Wearable Applications;2024 IEEE International Instrumentation and Measurement Technology Conference (I2MTC);2024-05-20

3. An approach to detect and predict epileptic seizures with high accuracy using convolutional neural networks and single-lead-ECG signal;Biomedical Physics & Engineering Express;2024-02-29

4. Bluetooth Enabled Microcontroller-based Stimulator for Assessing the Electrical Activity of Muscles;2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS);2023-12-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3