An Optimal Approach for Heart Sound Classification Using Grid Search in Hyperparameter Optimization of Machine Learning

Author:

Fuadah Yunendah Nur,Pramudito Muhammad Adnan,Lim Ki Moo

Abstract

Heart-sound auscultation is one of the most widely used approaches for detecting cardiovascular disorders. Diagnosing abnormalities of heart sound using a stethoscope depends on the physician’s skill and judgment. Several studies have shown promising results in automatically detecting cardiovascular disorders based on heart-sound signals. However, the accuracy performance needs to be enhanced as automated heart-sound classification aids in the early detection and prevention of the dangerous effects of cardiovascular problems. In this study, an optimal heart-sound classification method based on machine learning technologies for cardiovascular disease prediction is performed. It consists of three steps: pre-processing that sets the 5 s duration of the PhysioNet Challenge 2016 and 2022 datasets, feature extraction using Mel frequency cepstrum coefficients (MFCC), and classification using grid search for hyperparameter tuning of several classifier algorithms including k-nearest neighbor (K-NN), random forest (RF), artificial neural network (ANN), and support vector machine (SVM). The five-fold cross-validation was used to evaluate the performance of the proposed method. The best model obtained classification accuracy of 95.78% and 76.31%, which was assessed using PhysioNet Challenge 2016 and 2022, respectively. The findings demonstrate that the suggested approach obtained excellent classification results using PhysioNet Challenge 2016 and showed promising results using PhysioNet Challenge 2022. Therefore, the proposed method has been potentially developed as an additional tool to facilitate the medical practitioner in diagnosing the abnormality of the heart sound.

Funder

Ministry of Food and Drug Safety

National Research Foundation of Korea

Ministry of Science and ICT

Publisher

MDPI AG

Subject

Bioengineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EML-PSP: A novel ensemble machine learning-based physical security paradigm using cross-domain ultra-fused feature extraction with hybrid data augmentation scheme;Expert Systems with Applications;2024-06

2. Heart sound classification based on bispectrum features and Vision Transformer mode;Alexandria Engineering Journal;2023-12

3. HPClas: A data-driven approach for identifying halophilic proteins based on catBoost;2023-12-01

4. Heart Abnormality Detection Through Neural Network;2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS);2023-10-18

5. Heart Beat Sound Signals Classification Using Spectral Roll Off;2023 International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS);2023-10-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3