Optimization Design and Performance Analysis of a Bionic Knee Joint Based on the Geared Five-Bar Mechanism

Author:

Wang Zhuo1,Ge Wenjie1,Zhang Yonghong1,Liu Bo1,Liu Bin1,Jin Shikai1,Li Yuzhu1

Affiliation:

1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China

Abstract

Animal joint motion is a combination of rotation and translational motion, which brings high stability, high energy utilization, and other advantages. At present, the hinge joint is widely used in the legged robot. The simple motion characteristic of the hinge joint rotating around the fixed axis limits the improvement of the robot’s motion performance. In this paper, by imitating the knee joint of a kangaroo, we propose a new bionic geared five-bar knee joint mechanism to improve the energy utilization rate of the legged robot and reduce the required driving power. Firstly, based on image processing technology, the trajectory curve of the instantaneous center of rotation (ICR) of the kangaroo knee joint was quickly obtained. Then, the bionic knee joint was designed by the single-degree-of-freedom geared five-bar mechanism and the parameters for each part of the mechanism were optimized. Finally, based on the inverted pendulum model and the Newton–Euler recursive method, the dynamics model of the single leg of the robot in the landing stage was established, and the influence of the designed bionic knee joint and hinge joint on the robot’s motion performance was compared and analyzed. The proposed bionic geared five-bar knee joint mechanism can more closely track the given trajectory of the total center of mass motion, has abundant motion characteristics, and can effectively reduce the power demand and energy consumption of the robot knee actuators under the high-speed running and jumping gait.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3