Rapid Diagnosis of Ductal Carcinoma In Situ and Breast Cancer Based on Raman Spectroscopy of Serum Combined with Convolutional Neural Network

Author:

Wang Xianglei,Xie Fei,Yang Yang,Zhao Jin,Wu Guohua,Wang ShuORCID

Abstract

Ductal carcinoma in situ (DCIS) and breast cancer are common female breast diseases and pose a serious health threat to women. Early diagnosis of breast cancer and DCIS can help to develop targeted treatment plans in time. In this paper, we investigated the feasibility of using Raman spectroscopy combined with convolutional neural network (CNN) to discriminate between healthy volunteers, breast cancer and DCIS patients. Raman spectra were collected from the sera of 241 healthy volunteers, 463 breast cancer and 100 DCIS patients, and a total of 804 spectra were recorded. The pre-processed Raman spectra were used as the input of CNN to establish a model to classify the three different spectra. After using cross-validation to optimize its hyperparameters, the model’s final classification performance was assessed using an unknown test set. For comparison with other machine learning algorithms, we additionally built models using support vector machine (SVM), random forest (RF) and k-nearest neighbor (KNN) methods. The final accuracies for CNN, SVM, RF and KNN were 98.76%, 94.63%, 80.99% and 78.93%, respectively. The values for area under curve (AUC) were 0.999, 0.994, 0.931 and 0.900, respectively. Therefore, our study results demonstrate that CNN outperforms three traditional algorithms in terms of classification performance for Raman spectral data and can be a useful auxiliary diagnostic tool of breast cancer and DCIS.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Research and Development Fund of Peking University People’s Hospital

Publisher

MDPI AG

Subject

Bioengineering

Reference40 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3