Near-Infrared Blood Vessel Image Segmentation Using Background Subtraction and Improved Mathematical Morphology

Author:

Li Ling1,Liu Haoting1ORCID,Li Qing1ORCID,Tian Zhen1,Li Yajie1,Geng Wenjia2,Wang Song3

Affiliation:

1. Beijing Engineerin Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Department of Traditional Chinese Medicine, Peking University People’s Hospital, Beijing 100044, China

3. Department of Nephrology, Peking University Third Hospital, Beijing 100191, China

Abstract

The precise display of blood vessel information for doctors is crucial. This is not only true for facilitating intravenous injections, but also for the diagnosis and analysis of diseases. Currently, infrared cameras can be used to capture images of superficial blood vessels. However, their imaging quality always has the problems of noises, breaks, and uneven vascular information. In order to overcome these problems, this paper proposes an image segmentation algorithm based on the background subtraction and improved mathematical morphology. The algorithm regards the image as a superposition of blood vessels into the background, removes the noise by calculating the size of connected domains, achieves uniform blood vessel width, and smooths edges that reflect the actual blood vessel state. The algorithm is evaluated subjectively and objectively in this paper to provide a basis for vascular image quality assessment. Extensive experimental results demonstrate that the proposed method can effectively extract accurate and clear vascular information.

Funder

National Natural Science Foundation of China

Science and Technology on Near-Surface Detection Laboratory

State Key Laboratory of Intense Pulsed Radiation Simulation and Effect

Natural Science Foundation of Guangdong Province

Fundamental Research Fund for the China Central Universities of USTB

Publisher

MDPI AG

Subject

Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blood Vessel Detection in Fundus Images Using Symbolic Approach;2023 14th International Conference on Intelligent Systems: Theories and Applications (SITA);2023-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3