Exploring CNS Involvement in Pain Insensitivity in Hereditary Sensory and Autonomic Neuropathy Type 4: Insights from Tc−99m ECD SPECT Imaging

Author:

Chiang Cheng-Chun12ORCID,Wu Yu-Che1,Lan Chiao-Hsin2,Wang Kuan-Chieh2,Tang Hsuan-Ching2,Chang Shin-Tsu345ORCID

Affiliation:

1. Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan

2. School of Medicine, National Defense Medical Center, Taipei 114, Taiwan

3. Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan

4. Department of Physical Medicine and Rehabilitation, Taichung Veterans General Hospital, Taichung 407, Taiwan

5. Department of Physical Medicine and Rehabilitation, Tri-Service General Hospital, Taipei 114, Taiwan

Abstract

Hereditary sensory and autonomic neuropathy type 4 (HSAN4), also known as congenital insensitivity to pain with anhidrosis (CIPA), is a rare genetic disorder caused by NTRK1 gene mutations, affecting nerve growth factor signaling. This study investigates the central nervous system’s (CNS) involvement and its relation to pain insensitivity in HSAN4. We present a 15-year-old girl with HSAN4, displaying clinical signs suggestive of CNS impact, including spasticity and a positive Babinski’s sign. Using Technetium-99m ethyl cysteinate dimer single-photon emission computed tomography (Tc−99m ECD SPECT) imaging, we discovered perfusion deficits in key brain regions, notably the cerebellum, thalamus, and postcentral gyrus. These regions process pain signals, providing insights into HSAN4’s pain insensitivity. This study represents the first visualization of CNS perfusion abnormality in an HSAN4 patient. It highlights the intricate relationship between the peripheral and central nervous systems in HSAN4. The complexity of HSAN4 diagnosis, involving potential unidentified genes, underscores the need for continued research to refine diagnostic approaches and develop comprehensive treatments.

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3