Statistical Interior Tomography via L1 Norm Dictionary Learning without Assuming an Object Support

Author:

Wu JunfengORCID,Wang Xiaofeng,Mou Xuanqin

Abstract

Interior tomography of X-ray computed tomography (CT) has many advantages, such as a lower radiation dose and lower detector hardware cost compared to traditional CT. However, this imaging technique only uses the projection data passing through the region of interest (ROI) for imaging; accordingly, the projection data are truncated at both ends of the detector, so the traditional analytical reconstruction algorithm cannot satisfy the demand of clinical diagnosis. To solve the above limitations, in this paper we propose a high-quality statistical iterative reconstruction algorithm that uses the zeroth-order image moment as novel prior knowledge; the zeroth-order image moment can be estimated in the projection domain using the Helgason–Ludwig consistency condition. Then, the L1norm of sparse representation, in terms of dictionary learning, and the zeroth-order image moment constraints are incorporated into the statistical iterative reconstruction framework to construct an objective function. Finally, the objective function is minimized using an alternating minimization iterative algorithm. The chest CT image simulated and CT real data experimental results demonstrate that the proposed approach can remove shift artifacts effectively and has superior performance in removing noise and persevering fine structures than the total variation (TV)-based approach.

Funder

National Natural Science Foundation of China

Natural Science Basic Research Program of Shaanxi Province

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SOUL-Net: A Sparse and Low-Rank Unrolling Network for Spectral CT Image Reconstruction;IEEE Transactions on Neural Networks and Learning Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3