ZrO2-Based Photocatalysts for Wastewater Treatment: From Novel Modification Strategies to Mechanistic Insights

Author:

Rani Vandna,Sharma AmitORCID,Kumar AbhinandanORCID,Singh Pardeep,Thakur SourbhORCID,Singh Archana,Le Quyet Van,Nguyen Van HuyORCID,Raizada Pankaj

Abstract

Zirconium dioxide (ZrO2) has garnered substantial research interest in the field of photocatalytic water treatment due to its appealing properties, such as thermal stability, considerable physical strength, and strong chemical resistance. However, the wide bandgap energy endorses less photoabsorption and rapid charge carrier recombination kinetics, thus restricting the photoactivity of ZrO2. Previously, vast research efforts have been made to improve the photoefficacy of ZrO2, and hence it is worth exploring the potential strategic modifications responsible for incremented photocatalytic efficiency. In this regard, the present review article emphasizes the optical, structural, and electronic features of ZrO2, which makes it an interesting photocatalytic material. The exceptional modification strategies that help to modulate the crystal structure, morphology, bandgap energy, and charge carrier kinetics are primarily discussed. The potential synthetic routes involving bottom-up and top-down methods are also outlined for understanding the rationale for incorporating these techniques. Moreover, the photocatalytic performance evaluation was done by investigating the photodegradation kinetics of various organic and inorganic pollutants degradation by ZrO2. Conclusively, in light of research advances involving ZrO2 photocatalyst, this review article may expedite further investigation for enhancing the large-scale photocatalytic applications for environmental and energy concerns.

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3