Chloride-Enhanced Removal of Ammonia Nitrogen and Organic Matter from Landfill Leachate by a Microwave/Peroxymonosulfate System

Author:

Feng Ke,Li Qibin

Abstract

Landfill leachate contains not only high concentrations of refractory organic matter and ammonia nitrogen, but also high concentrations of chloride ions (Cl−). The modification of reactive species of the peroxymonosulfate (PMS) oxidation system by Cl− and its priority sequence for the removal of NH4+-N and organic matter from landfill leachate remain unclear. This study investigated the removal characteristics of NH4+-N and organic matter in the microwave (MW)/PMS system with high Cl− content. The results show that increasing Cl− concentration significantly improves the production of hypochlorous acid (HOCl) in the MW/PMS system under acidic conditions, and that the thermal and non-thermal effects of MW irradiation have an important influence on the HOCl produced by PMS activation. The maximum cumulative concentration of HOCl was 748.24 μM after a reaction time of 2 min. The formation paths of HOCl are (i) SO4•− formed by the MW/PMS system interacting with Cl− and HO•, and (ii) the nucleophilic addition reaction of PMS and Cl−. Moreover, the high concentration of HOCl produced by the system can not only remove NH4+-N in situ, but also interact with PMS to continuously generate Cl• as an oxidant to participate in the reaction with pollutants (e.g., NH4+-N and organic matter). Common aqueous substances (e.g., CO32−, HCO3−, NO3−, and humic acid) in landfill leachate will compete with NH4+-N for reactive species in the system, and will thereby inhibit its removal to a certain extent. It was found that when NH4+-N and leachate DOM co-exist in landfill leachates, they would compete for reactive species, and that humic acid-like matter was preferentially removed, leading to the retention of fulvic acid-like matter. It is hoped that this study will provide theoretical support for the design and optimization of methods for removing NH4+-N and organic matter from landfill leachate with high chloride ion content.

Funder

Chengdu Science and Technology Bureau

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3