Abstract
The photocatalytic reduction of hexavalent chromium, Cr(VI), to the trivalent species, Cr(III), has continued to inspire the synthesis of novel photocatalysts that are capable of achieving the task of converting Cr(VI) to the less toxic and more useful species. In this study, a novel functionalized graphitic carbon nitride (Cu3.21Bi4.79S9/gC3N4) was synthesized and characterized by using X-ray diffraction (XRD), thermogravimetry analysis (TGA), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), transmission electron microscope (TEM), and scanning electron microscope (SEM). The composite was used for the photocatalytic reduction of hexavalent chromium, Cr(VI), under visible light irradiation. A 92.77% efficiency of the reduction was achieved at pH 2, using about 10 mg of the photocatalyst and 10 mg/L of the Cr(VI) solution. A pseudo-first-order kinetic study indicated 0.0076 min−1, 0.0286 min−1, and 0.0393 min−1 rate constants for the nanoparticles, pristine gC3N4, and the nanocomposite, respectively. This indicated an enhancement in the rate of reduction by the functionalized gC3N4 by 1.37- and 5.17-fold compared to the pristine gC3N4 and Cu3.21Bi4.79S9, respectively. A study of how the presence of other contaminants including dye (bisphenol A) and heavy-metal ions (Ag(I) and Pb(II)) in the system affects the photocatalytic process showed a reduction in the rate from 0.0393 min−1 to 0.0019 min−1 and 0.0039 min−1, respectively. Finally, the radical scavenging experiments showed that the main active species for the photocatalytic reduction of Cr(VI) are electrons (e−), hydroxyl radicals (·OH−), and superoxide (·O2−). This study shows the potential of functionalized gC3N4 as sustainable materials in the removal of hexavalent Cr from an aqueous solution.
Funder
National Research Foundation
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献