Abstract
Two-dimensional graphitic carbon nitrides (2D g-C3N4) are promising photocatalysts for water splitting to hydrogen due to their non-toxicity and high stability. However, the bulk g-C3N4 has some intrinsic drawbacks, such as rapid electron–hole recombination and low charge-carrier mobility, resulting in poor photocatalytic activity. Here, 2,4-diamine-6-phenyl-1,3,5-triazine was employed as a precursor to regulating the assembly of melamine and cyanuric acid in water. The resulting g-C3N4 not only improved the visible light absorption and electron–hole separation but also provided more catalytic sites for enhanced photocatalytic hydrogen evolution. The modified g-C3N4 (CNP10-H) showed a hydrogen-releasing rate of 2184 μmol·g−1·h−1, much higher than the bulk g-C3N4.
Funder
Natural Science Foundation of Jiangsu Province
Science Fund for Distinguished Young Scholars of Nanjing Forestry University
“Ministry of Science & Technolog China”
Metasequoia Scientific Research Funding Nanjing Forestry University
Subject
Physical and Theoretical Chemistry,Catalysis,General Environmental Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献